博炮作文网

博炮作文网>博弈论让你受益一生的思维方式与生存策略 > 第7部分(第5页)

第7部分(第5页)

投票者可以通过判断群体决策的结果对自己的有利程度来投票,即判断F=1与F=0给他带来的好处来决定,因此他的选择是较简单的:如F=1对自己有利就选择“同意”(1),否则就“不同意”(0)。

但是,在互动过程中,投票者要考虑的另外一个重要的问题是他的投票对决策的影响程度。如果他对整个社会或集体的决策影响大,他的权力大,他的积极性就高,反之他的积极性就低。而权力反映在上面所说的投票影响度上。

在一个群体中,一个人对一项决策可以完全由他决定,那么他就是*者,*者的投票影响度为1。而*制度下的臣民对投票结果的影响程度为0。在*制度下,每个投票者对结果的影响程度必定是介于0和1之间的一个值。

在一个人数很多的采取*投票的群体中,投票者由于考虑到他对投票结果的影响程度低,投票不积极,或者说,干脆不投票。让我们分析这个情况。

在3个人组成的群体中,“大多数原则”下逻辑式为(3…4),每个人的投票影响度可求得为:d(n=3)=12。

通过数值计算我们求得:

d(n=10)=

d(n=50)=

d(n=100)=

如果我们用一个百分比来衡量影响程度,投票者投票的“影响比率”为:

通过计算我们可得:

r(n=3)=300%

r(n=10)=%

r(n=50)=

r(n=100)=

由此可见,随着人数的增加,影响比率在降低。当人数达到上千万上亿的时候,每个投票者对投票结果的影响度近于0,即几乎没有影响,它反映的是在人数很多的情况下,人们的权力太小了,几乎是0。这也就是为什么在*社会中许多选民不投票的原因。

因此,对于一个有很多人组成的社会,尽管在“大多数原则”下*投票是揭示群体偏好的一个好的方法,它是“正义的”,但在进行*投票表决时,每个人有充分的投票意识是至关重要的。虽然个人的投票对选举结果影响不大,但他要意识到,投票不仅仅是他神圣的权利,更重要的是他为社会所尽的义务。只有这样才能摆脱*中投票存在的不投票的问题。

一个群体中有多少种可能的权力结构?

我们已经说明:投票是揭示群体各投票者的偏好的方式。但是投票结果取决于逻辑结构。在上面的例子中我们已经表示了“*的”和“大多数原则”的*方式。这只是投票博弈的两种方式,只是权力分配的两种方式。一般地说,对于n人组成的社会有多少种可能的权力结构呢?

在A、B两人组成的最简单的群体中,从逻辑可能性的角度,A、B之间有16种可能的决策结构,但有以下4种决策方式是常见的,或者能在现实中找到意义的。它们是:

(1) F=A,(2)F=B,(3)F=A+B,(4)F=AB。

在(1)和(2)中分别是A、B说了算的*式的决策结构。在(3)、(4)中A与B有相等的决策权力,但是在(3)中,只要有一个人同意就通过,在(4)中要A、B两人同时同意才行。

因此在方式(3)中的决策比方式(4)中的决策要容易。

夫妻间的决策是现实的例子。他们间的决策无非是这4种方式。也许在*的夫妻间,重大的决策采取的是(4),即夫妻均同意才去做,如:夫妻商量着决定买房、孩子上学,等等。对一些小事或者一些临时碰到的事情则可能采取的是(3),比如每天买什么菜这样日常生活或工作中的小事。读者不妨想一想是不是这么一回事情。

其他12种呢?这12种是:

(5)F='AKA~',(6)F='AKB~',(7)F='AKA~'+B,(8)F='AKA~'+'AKB~',

(9)F=A+'AKB~',(10)F='AKA~'B,(11)F='AKA~'+'AKB~',(12)F=A+'AKB~',(13)F='AKA~'B+A'AKB~',(14)F='AKA~''AKB~'+AB,(15)F=1,(16)F=0。

其中(15)、(16)是两种特殊的逻辑结构,即投票结果为常数,与投票者是否投票无关。

怎么解释其他10种呢?

可以这么认为,一旦在决策的逻辑结构中存在“逻辑非”,表明在投票中存在“相互的策略投票”,即:投票者不仅要考虑自己的偏好而且要考虑他人的偏好,这10种方式反映了投票者或决策者相互的猜测。因此,这10种结构不是独立的,它们分别是上述4种的变化。它们也反映了投票时人们之间复杂的关系。

如:(5)F='AKA~',(6)F='AKB~',与F=A或F=B是同构的。但一个两人的群体的决策结构如何可能是F='AKA~'(或F='AKB~')?一个解释是:F='AKA~' (F='AKB~')表明的是,B(或A)是*者,但是他的决策与A(或B)的决策正好相反!它反映了*者B(或A)这么认为:“凡是A(或B)反对的,我就赞同;凡是A(或B)赞同的,我都反对。”这只是一个解释。

对于这10种情况另外的解释是:有第三个人,他是决策的决定者,但是他的决定根据的是其他两个决策者的偏好情况。如“F='AKA~'+B”说的是A“不同意”,B“同意”,这第三个人就“同意”,否则就“不同意”。

3个人组成的群体有多少变化呢?3人组成的一个决策群体,从逻辑可能性来说,其可能的权力分配的结构相当多,有256种之多!而独立的不含“逻辑非”的逻辑结构共有13种。读者可以试着写出这些逻辑式子,并找出在现

已完结热门小说推荐

最新标签